A Financial Regulatory Cryptogram?

Cryptogram:
• A puzzle involving code
• Text transformed into code

The challenge of regulating blockchain technology, which is designed around cryptography, in the financial sector
Outline

• Applications
• Design Considerations
• What is Blockchain?
• Types of Blockchain
• A Financial Regulatory Cryptogram
• Research: Moving Forward
• Q & A
Applications

• Blockchains are being promoted as a financial system revolution

• New and proposed applications, for example:
 • Trade finance
 • Payment systems
 • Settlement and clearing
 • Relatively slow implementation
Design Considerations

- Blockchains are not generic
 - Type of blockchain
 - Technological design
Design Considerations

• Fundamental question - why use blockchain?
 • Factors influencing the design
 • Financial markets and behaviour
 • Legal and regulatory objectives
 • Legal and regulatory parameters
 • Fit for the purpose?
What is Blockchain?

• Distributed ledger technology (DLT)
 • A distributed network of computers or a computer system
 • Record, disseminate and validate data across the network / system
 • A blockchain is a type of DLT with specific qualities:
 • Shared database arranged in a chain structure
 • Consists of blocks that are chained in a chronological sequence
 • Each block represents a ledger - a digital account of transaction data
What is Blockchain?

• Data stored across a chain of computers

• Together forms digital database infrastructure

• Continuously distributes, validates and stores data

• Ensures that the blockchain is accurate and up to date
Cryptography

How does the blockchain ensure that the data is accurate?

Cryptography:

- Security protocols to protect data from being compromised
- Third parties and corrupt nodes
- All transactions and blocks across the network are connected and protected by cryptography
Cryptography

• Several different types of cryptography
 • For example:
 • Key cryptography
 • Digital signatures
 • Hash function
 • Consensus mechanisms
Key Cryptography

• Symmetric Key Cryptography
 • One algorithmic key to encrypt and decrypt
 • Fast
 • Requires sharing the key
 • Transferring the key can undermine security
Key Cryptography

- Asymmetric Key Cryptography
 - Two algorithmic keys
 - Private and public key pair
 - Managed by blockchain software
 - Held in a digital wallet
Key Cryptography

• Asymmetric Key Cryptography

• Public key
 • Anyone can view the public key
 • Represents the owner of the public / private key pair
 • To send transactions to the key pair owner
 • Used by the key pair owner to receive transactions
 • Similar to a public email address and a bank account number
Key Cryptography

• Asymmetric Key Cryptography
 • Private key
 • Provides control over the public key
 • Encrypts and decrypts transactions sent from the public key
 • Generates a digital signature
 • Used to sign and send transactions from the public key
 • Similar to a password and signature
Digital Signatures

- Identifies a key pair holder for both a transaction sender and recipient
- For a transaction, verifies
 - Key ownership
 - The authenticity of the data sent
 - That a transaction is legitimate
- One digital signature corresponds to one transaction
Digital Signatures

• Trusted identity system

• Proves that a person owns a private key without having to reveal the private key

• Consist of two parts:
 1. Signing - using the private key to generate a digital signature
 2. Verifying - using the public key to verify that a digital signature has been generated from a private key
Verifying Digital Signatures

• Matching the hashes produced by a key pair for a transaction

• If the signature is not verified, the transaction will be rejected

• Transaction is void

• If necessary, the algorithm performs restitution

• Not recorded on the blockchain

• If verified, the transaction is provisional and unconfirmed (i.e., unvalidated)
Hash Function

- Transactions are hashed by a one-way cryptographic algorithm
 - Transformed into a fixed length output - hashing
 - A hash is almost impossible to reverse engineer (i.e., change)
 - Every block (and transaction) is assigned a hash value
 - Each block records the hash of the preceding block in the chain (c/f genesis)
 - Connects the blocks in the chain together
Hash Value

• Identifies the data held in each block

 • Every block’s hash value is different (i.e., collision-free hashing algorithm)

 • A block should always have the same hash value

 • Any changes to a transaction will be reflected in the block hash value

 • Compare a block’s hash value with the next block (i.e., audit trail)
Consensus Mechanisms

- Transactions are not validated until there is consensus
- Reach an agreement on the state of the network
- Once a block reaches its fixed length, adds the next block to the chain
Consensus Mechanisms

• Different types have different features
 • Security and resilience levels
 • Fault tolerance
 • Continue functioning despite node failure or malicious activity
 • Transaction settlement times
 • Transaction costs
 • Energy usage
Consensus Mechanisms

- Mechanisms vary depending on the type of blockchain and its functionality

- Some examples:
 - Proof-of-work
 - Proof-of-stake
 - Proof-of-elapsed-time
Blocks in the Chain

- Blocks are validated and authenticated by the consensus protocol.
- Data contained in a block is not generic.
- Consists of two parts:
 - Header: metadata
 - Body: input data
Blocks in the Chain

- Metadata:
 - Software version
 - Root hash (used to calculate the hash value)
 - Parent block hash
 - Other information to function
 - E.g., time stamp, consensus goal
Blocks in the Chain

- Input data
- Ledger of transaction data
- Merkle tree structure
- Transactions are hashed
- A pair of hashed transactions represents a leaf
- A pair of leafs are consolidated into a parent leaf
Types of Blockchain

- Public
- Decentralised
- Private
- Centralised
- Consortium
- Hybrid
- Public with private / Private with public
Types of Blockchain

Distinguishing Features:

- Access
 - Permissionless, permissioned or hybrid
- Degree of centralisation
 - Public, private or hybrid
- Cryptography
A Financial Regulatory Cryptogram

• Fundamental questions need to be addressed:

• Does the technology provide any distinct advantages over the status quo?
• Are the advantages sufficient to justify changing the status quo?
• What are the trade-offs?
• What financial market weaknesses are introduced by the technology?
• Risks (e.g., technology-based); design flaws; market inefficiencies and behaviour
A Financial Regulatory Cryptogram

Fundamental questions need to be addressed:

• Are existing financial regulatory frameworks fit for the purpose?
 • If not, what amendments or new regulatory frameworks are needed?
• Will financial regulations shape the blockchain design?
• Will RegTech or SupTech influence the design?
A Financial Regulatory Cryptogram

• Viability
 • Determine whether blockchain is a viable alternative
 • Where viable, each application will need to be tailor made
 • From a technological standpoint
 • From a legal and financial regulatory standpoint
 • Business case - satisfy a cost / benefit analysis
A Financial Regulatory Cryptogram

• What we do know:
 • Not merely an application of the law to determine viability
 • Requires a holistic approach
 • Intersection between technology, finance and regulation
 • Financial market infrastructure is being redesigned
 • In most cases financial regulatory frameworks will need to be redesigned
Research: moving forward

• Research focuses on the regulation of financial markets
 • From a technological, financial and legal perspective
 • Interdisciplinary comparative analysis
 • Determine both viable use cases and unviable designs
 • Appraise the parameters and limitations of current financial regulatory frameworks
 • Domestic and cross-border
 • Propose regulatory amendments and / or new regulatory frameworks
 • Is there a role for RegTech or SupTech?